
TNB M10x – In-House Developed Tool for Learning IEC 60870-5-101/104 SCADA Communication Protocols

Azlan Muhamad Sufian, Ir. Ts. Affiezal Adnan

Author's Profile

- Ir. Ts. Affiezal bin Adnan
- Training Engineer (Protection- Grid), TNB Integrated Learning Solution Sdn. Bhd. - ILSAS

Background on SCADA System, IEC-101 & IEC-104

ILSAS Conference on Learning & Development 2019

Muhammad Sufian, Adnan (2019)

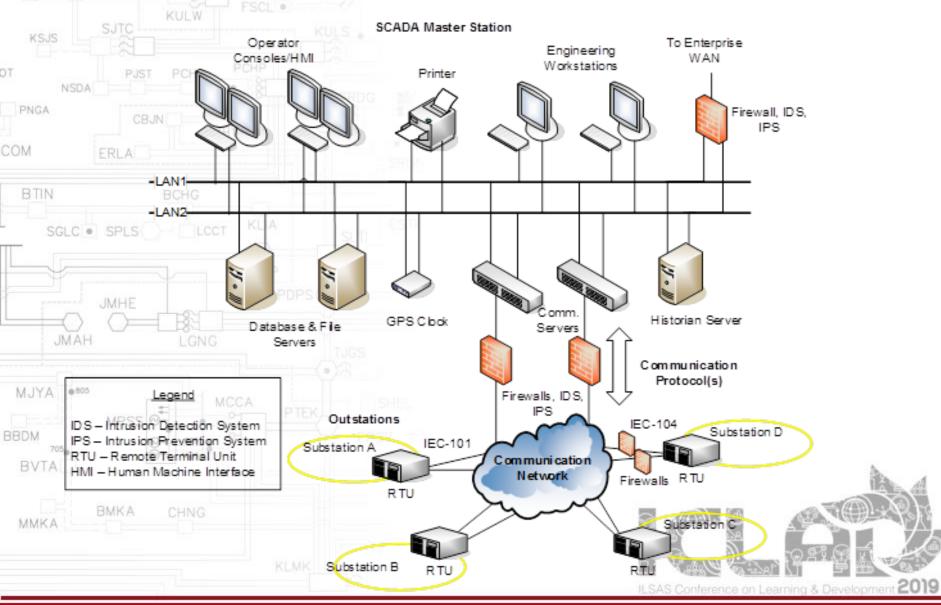
For ICLAD 2019 4

Introduction to SCADA System

SCADA = Supervisory Control And Data Acquisition

 Used to monitor and control remote substations within Peninsular Malaysia National Grid (500kV, 275kV, 132kV, 33kV, 22kV, 11kV substations)

3 Main Components


- Master Station (NLDC, NERCC, MSRCC)
- Communication Media
- Remote Terminal Unit (RTU)

II SAS Conterence on Learning & De

COM

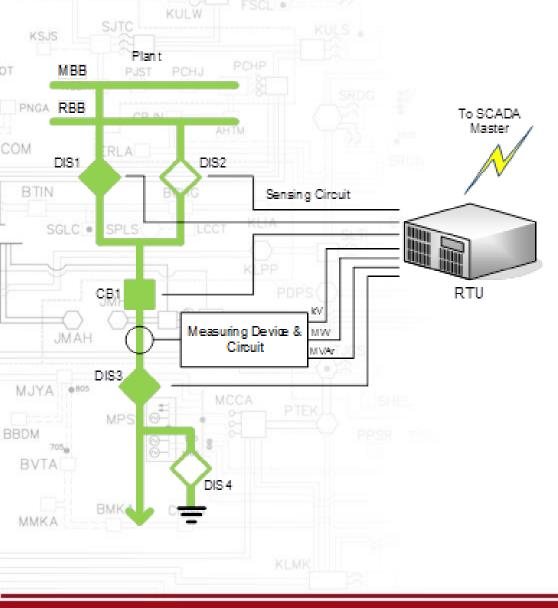
BTIN

Typical SCADA System Architecture

SCADA Functions

PNGA

BTIN


COM

Enable Power System Grid Operators (NLDC, NERCC & MSRCC) to

- Monitor plant status, measurements (Power, Voltage, Current etc.)
 - Operate High Voltage apparatus (Plant Equipment) remotely (Trip and Close Circuit Breakers)
- Supervise equipment condition by monitoring critical alarms and escalate to maintenance crew

ILSAS Conference on Learning & Deve

RTU Interfacing to Plant Equipment

"RTU is the eyes, ears and hands of the SCADA system"

Introduction to IEC 60870-5-101/104 SCADA Communication Protocols

 A SCADA communication protocol describes the message structure, its semantics, error handling and the procedure of exchanging messages between master and RTU

 IEC 60870-5-101/104 are abbreviated as IEC-101 and IEC104

IEC-101 utilizes serial communication

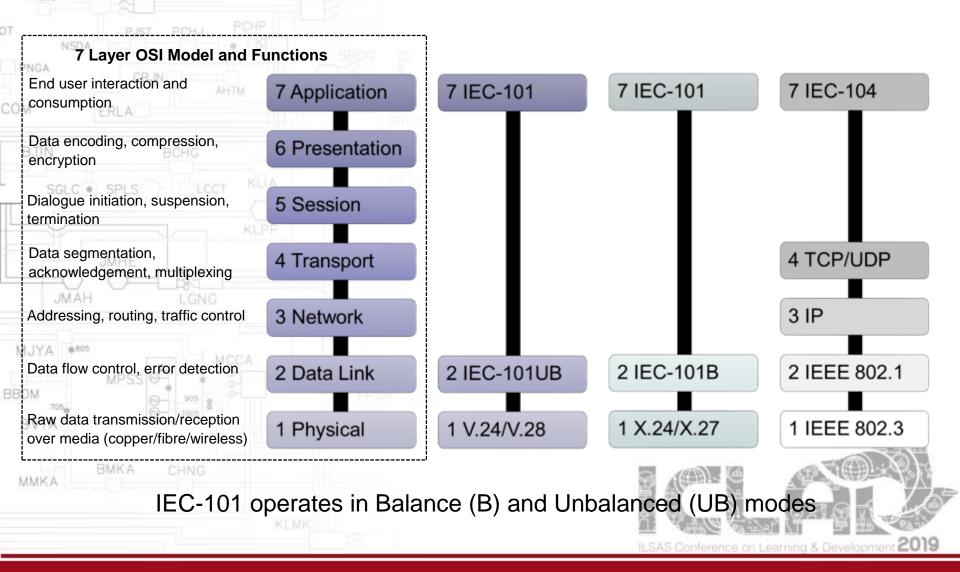
IEC-104 utilizes Ethernet-based communication

- Released in Feb 1990, with latest updates on June 2016 by International Electrotechnical Commission (IEC)
 - This standard covers telecontrol equipment for monitoring and controlling geographically widespread processes

IEC-101, IEC-104 and OSI Model

- **OSI** (Open System Interconnection) Model is a conceptual model used to characterized and standardized communication functions
- **Developed by ISO (International Organization for** Standardization) SGLC .
- Consists of 7 'layers' that are connected to one another (each layer in a device provides relevant info to corresponding layer in the other connected device)
- These layers have specific functions and passes data to one layer above and below it
- Data is encapsulated (additional data headers as added) BVTA as it traverses down the layers and de-encapsulated (additional data headers are stripped off) as it travers up the layers. ILSAS Conference on Learning & Development 2019

PNGA


BTIN

COM

BBDM

MMK)

IEC-101, IEC-104 and OSI Model

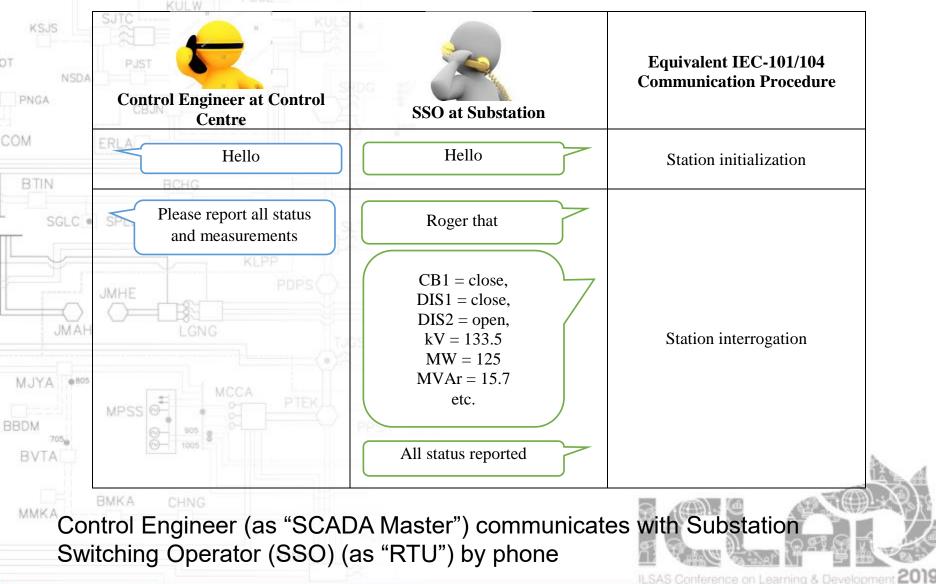
Muhammad Sufian, Adnan (2019)

TMSY SJSS

KSJS

IEC 101/104 Application Functions, ASDU and Mapping to SCADA Functions

Application Function/ Communication Procedure	IEC-101/104 ASDU*	SCADA Function	
Station initialization	End of initialization (R)	Establishment of communication with RTU	
Acquisition of events CBIN ERLA	Single-point information with time tag CP56Time2a (R)	 Monitoring of plant equipment status, indications and alarms e.g. Circuit breaker spring uncharged Protection relay operated 	
	Double-point information with time tag CP56Time2a (R)	 Monitoring of switchgear status, e.g.: Circuit breaker trip/close Disconnector open/close 	
SGLC SPLS	Measured value, short floating point value with time tag CP56Time2a (R)	Monitoring of plant measurements e.g. voltage (kV), active power (MW) and reactive power (MVAr)	
Station interrogation	 Interrogation command (M) Single-point information (R) Double-point information (R) Measured value, short floating point value (R) 	Updating plant equipment data after connection with RTU is established or re- established after communication breakdown	
Clock synchronization	Clock synchronization command (M)	Synchronizing RTU clock	
Command transmission	Double command (M)	 Operating switchgears e.g.: Opening/closing circuit breaker Opening/closing disconnector 	


* Note: (M) / (R) indicates the message is initiated by (M)aster station or (R)TU respectively

The ASDU (Application Service Data Unit), exchanged between master and RTU defines the specific message data structure and the required parameters to perform a specific protocol application function

Muhammad Sufian, Adnan (2019)

ILSAS Conference on Learning & Developr

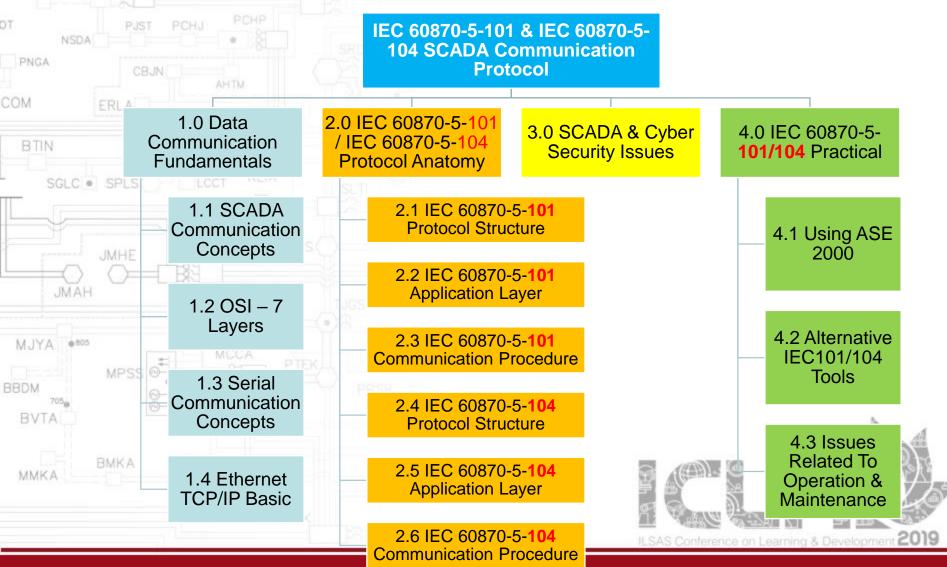
IEC 101/104 Protocol Operation by Analogy

Teaching IEC-101 & IEC-104 in ILSAS

ILSAS Conference on Learning & Development 2019

Muhammad Sufian, Adnan (2019)

For ICLAD 2019 14


Training Need for IEC-101/104

To provide theoretical knowledge and practical experience for operation and PNGA maintenance personnel on IEC-101 and COM BTIN **IEC-104 SCADA communication protocol** More then 90% of TNB SCADA Equipment uses IEC-101/104 as their main communication protocol

Learning Structure for IEC101/104 in ILSAS

Challenges in Teaching IEC-101/104 to Adult Learners

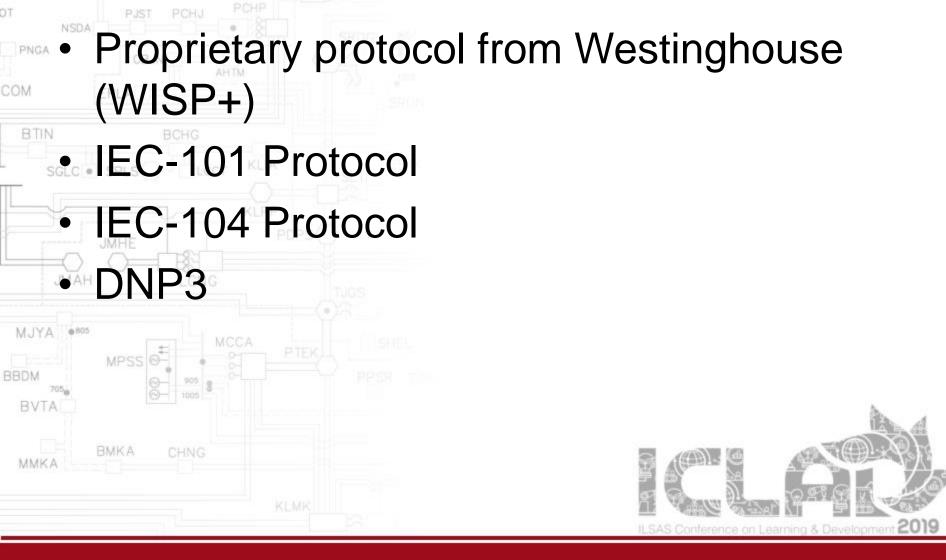
- This subject is very conceptual
- Learning by VAK (Visual, Auditory and Kinesthetic)
- Lack of interactive examples for the course
 - Lack of hands-on practice

 Limited access to software tool - currently the class uses Kalkitech ASE 2000 as protocol analyzer for IEC-101 and IEC-104 (3 Units of ASE 2000)

PNGA

BTIN

MJYA


BVTA

BBDM

RTU Lab in ILSAS

The only lab in Peninsular Malaysia with actual RTUs from multiple vendors PNGA Foxboro C50 COM Foxboro SCD 5200 BTIN • PDSB Viscon2 C3 Dong Fang DF1331 Dong Fang DF1725 • ABB 560 MJYA @805 These RTUs have simulatable Input (via Toggle BBDM Switches) and Output (via Visual Lamps) BVTA BMKA MMK) ILSAS Conference on Learning & Develo

SCADA Communication Protocol Classes in ILSAS

Typical SCADA Communication Protocols Training in ILSAS

 Limited number of class size (max. 12 students per class) since current Protocol Analyzers are limited to 3 licenses (4 students per group)

 Theory-based learning (vs. flipped class, student-led learning)

Now made possible with M10x allowing increased No. of students per class

BBDM

BVTA

I SAS Conterence on Learning & De

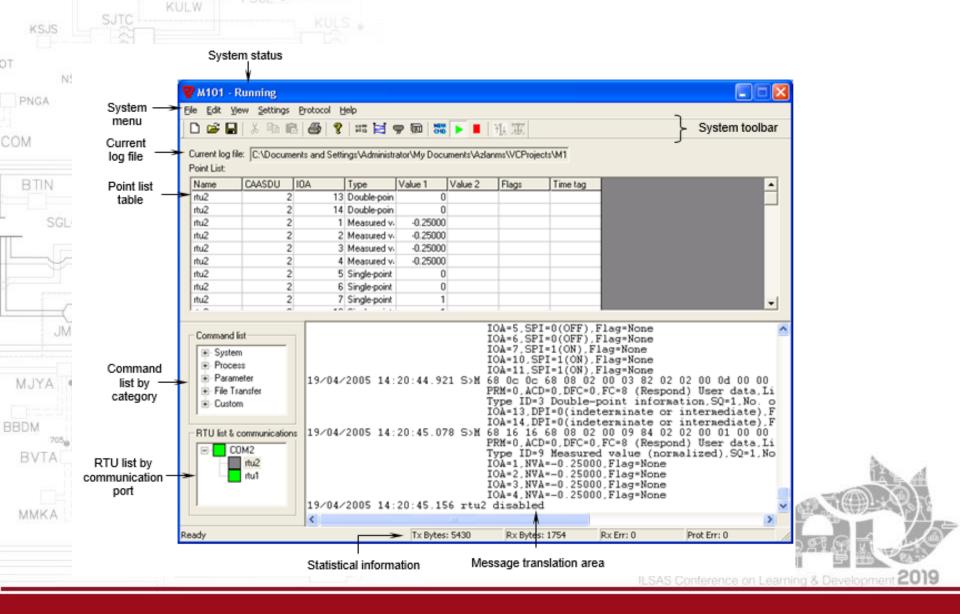
TNB M10x Application

ILSAS Conference on Learning & Development 2019

Muhammad Sufian, Adnan (2019)

For ICLAD 2019 21

TNB M10x Application


Work started in 2003 by a small team in TNB Transmission Division (now TNB Grid Division), called M101

Using Microsoft Visual C++

- Primarily used for RTU Protocol
 Conformance Testing on IEC-101
- In 2017, NLDC developed support for IEC 104

M101 renamed to M10x to reflect added support for IEC-104

Screenshot of M10x and its Main GUIs

M10x Use in Training

 RTU is preconfigured with suitable I/O representing Circuit Breakers, Isolators etc.

- Various scenarios are presented to the trainees
 - to achieve using M10x
 - Retrieve all RTU data
 - Simulate RTU events (status and alarms)
 - Simulate RTU measurements
 - Sending Command to Trip/Close Circuit Breakers/Isolators
 - Setting RTU Clock
 - Simulate communication breakdown and recovery

BTIN

BBDM

BVTA

Example: Command Transmission – Closing Circuit Breaker

urrent log file: D:///CProjects/M10x/Debug/msg1		_	Double command	×
and List	og		a construction (Marcal)	
Vane CAASOU IOA Type	Value 1 V	alue 2 Flags Time tag	Data Unit Identifier Information Object	1
			IOA: 2100 F Select & execute	automatically
	_		- 000	
		Step 1: Specify		s: 2
		command parameter	ters	~ 4
			Date & time	
		Control de Mantes ande	Use current date & time	
Command list	11/07/2019 16:41:21.125 1 11/07/2019 16:41:21.134	MS 68 04 07 00 00 00	Miliseconds: 06075	
Process Single command	11/07/2019 16:41:21.190 1		Minutes: 41 IV: 0	Res: 0
- Double command	11/07/2019 16:41:21.204 1		46 01 06 Hours: 16 SU: 0 P	les2. 0
 Regulating step command Setpoint command (normalized) 		I-Fra.N(S)=0.N(R) Type ID=70 End of	initialis Uay of months 11 Day of w	
 Setpoint command (scaled) Setpoint command (short floating point) 	11/07/2019 16:41:29.494		64 01 06 Months: 7 P	les3. 0
- Bitstring of 32 bit		I-Frm.N(S)=0.N(R) Type ID=100 Intern	rogation (Years 19 P	les4: 0
 Single commad with full time Double command with full time 	11/07/2019 16:41:29.540 :		64 01 07	
c >		I-Frm.N(S)=1.N(R) Type ID=100 Inter:	rogati ou o orus	1 Cancel
RTU list & communications	11/07/2019 16:41:29.555 !	IOA=0.QOI=20 (stat S>H 68 0e 04 00 02 00	64 01 Count human	
	1	I-Fra.N(S)=2.N(R)=	Sena batton	

Comparison with other Protocol Analyzer

KS.	Feature	Other Protocol Analyzer	TNB M10x			
] pnga OM	Supported protocols	IEC-101 (Balanced & Unbalanced), IEC-104, DNP3, Modbus	IEC-101 (Unbalanced), IEC-104			
ВТИ	Mode	Master & Slave Simulation, Eavesdrop	Master Simulation, Eavesdrop			
ſ	Slave topology	Point-to-point, party line (IEC-101), star	Point-to-point, party line (IEC-101)			
	Point list	Available	Available			
MIX	Message Translation	Available	Available			
BDM	Logging	Available (proprietary format)	Available (text file)			
 Most of standard features are supported Unsupported features are optional or not required by TNB 						

Muhammad Sufian, Adnan (2019)

TMSY

ILSAS Conference on Learning & Development 2019

Benefit of TNB M10x

Low CAPEX (Free)

KSJS

JMAH

MJYA

BBDM

BVI

COM

 In-house development, can be further customized to fit evolving requirements

• Free software that trainee can take home and use in daily work (Grid Maintenance)

Conclusion

• M10x is a cost effective tool that are used in order to increase competency for IEC-101 and IEC-104

- Trainees are more hands-on and can really re-inforce their understanding in IEC-101 and IEC-104
 - Low cost means that

PNGA

JMAH

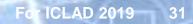
BVT

COM

- trainees that straight away use the tool immediately after training
 retraining is not required after relocation of staff if M10x becomes
 a standard tool in TNB
- In-house training module by ILSAS, external training provider not required
- In-house development means that the tools can be further customized to meet users' needs

II SAS Conterence on Learning & De

Demo on M10x


ILSAS Conference on Learning & Development 2019

Muhammad Sufian, Adnan (2019)

For ICLAD 2019 30

Thank You

Thank You

Main Branch:

TNB Integrated Learning Solution Sdn Bhd – ILSAS, Jalan IKRAM-UNITEN, 43650 Bandar Baru Bangi, Selangor, Malaysia. Tel: (+6)03-892272222 Fax: (+6)03-89263505 Email: infoILSAS@tnb.com.my Website: www.tnbilsas.com.my

Malim Nawar Branch:

TNB Integrated Learning Solution Sdn Bhd – ILSAS, PO Box 1, 31700 Malim Nawar, Perak, Malaysia. Tel: (+6)05-4775960 Fax: (+6)05-4775954

Class 'A' Training Provider

Human Resource Minister Award 2007 Winner—Best Training Provider Category